数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48464 / 親記事)  直線の通過領域
  
□投稿者/ waka 一般人(7回)-(2018/06/28(Thu) 13:27:28)
    いつもありがとうございます。
    以下の問題をお願いします。

    「tを実数として、平面上の直線 lt:tx+(1-t)y=t(1-t)を考える。
    tが0<t<1の範囲を動くとき、x>0、y>0の範囲でltが通過する部分を図示し、その面積を求めよ。」

    模範解答で
    0<t<1 より 1-t>0
    tx+(1-t)y=t(1-t) の両辺を 1-tで割ると

    {tx/(1-t)}+y=t
    よって y={tx/(t-1)}+t

    y>0 より
    {tx/(t-1)}+t>0
    ゆえに 0<t<1-x, 0<x<1

    dy/dt=-{x/(t-1)^2}+1
    dy/dt=0 とすると (t-1)^2 =x
    ゆえに t-1=-√x
    よって t=1-√x

    ここまではよいのですが・・・

    ここからグラフをかいているのですが、どうやってそのグラフが出てくるのかが分かりません。
    また、t=1-√xのときyは最大値y=(1-√x)^2となったこととグラフの関係はあるのですか。
    よろしくお願いします。

引用返信/返信 [メール受信/OFF] 削除キー/
■48465 / ResNo.1)  Re[1]: 直線の通過領域
□投稿者/ らすかる 一般人(9回)-(2018/06/28(Thu) 14:19:27)
    「そのグラフ」がどんなグラフかわかりませんのでグラフについては何とも言えませんが、
    ltが通過する部分はx>0かつy>0かつy≦(1-√x)^2となりますね。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター