数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48460 / 親記事)  場合の数
  
□投稿者/ waka 一般人(5回)-(2018/06/25(Mon) 14:31:20)
    「3桁の整数nの百の位,十の位,一の位の数字をそれぞれa,b,cとするとき, a≧b≧cを満たす整数nは何個あるか」
    という問題で等号がなければ10C3と分かるのですが・・・。よろしくお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■48461 / ResNo.1)  Re[1]: 場合の数
□投稿者/ らすかる 一般人(7回)-(2018/06/25(Mon) 17:26:02)
    A=a+2,B=b+1,C=cとすると
    「9≧a≧b≧c≧0を満たす」
    ⇔「11≧A>B>C≧0を満たす」
    となりますので、12C3-1=219通りです。
    (-1は000の分)

引用返信/返信 [メール受信/OFF] 削除キー/
■48462 / ResNo.2)  Re[2]: 場合の数
□投稿者/ waka 一般人(6回)-(2018/06/25(Mon) 20:50:54)
    ありがとうございます。
    A=a+2, B=b+1, C=c という発想はどこからきたのですか?
引用返信/返信 [メール受信/OFF] 削除キー/
■48463 / ResNo.3)  Re[3]: 場合の数
□投稿者/ らすかる 一般人(8回)-(2018/06/25(Mon) 21:10:42)
    a,bが整数の時a≧b ⇔ a+1>bですから
    大きい方に1足せば不等号を≧→>に変えられますね。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター