数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■47687 / 親記事)  ガウス記号
  
□投稿者/ 陽 一般人(1回)-(2016/06/05(Sun) 13:58:57)
    を自然数とするとき、



    が成り立つことを教えて下さい。
引用返信/返信 [メール受信/OFF] 削除キー/
■47688 / ResNo.1)  Re[1]: ガウス記号
□投稿者/ らすかる 一般人(21回)-(2016/06/05(Sun) 16:24:20)
    n=6mのとき、左辺は
    Σ[k=1〜2m][(6m-3k+2)/2]
    =Σ[k=1〜m](3m-3k+2)+Σ[k=1〜m](3m-3k+1) (kの偶奇で分けてそれぞれ計算)
    =Σ[k=1〜m](6m-6k+3)
    =3m^2
    右辺は
    [{(6m)^2+6}/12]
    =[(36m^2+6)/12]
    =3m^2
    となり成り立つ。

    n=6m+1のとき、左辺は
    Σ[k=1〜2m][(6m-3k+3)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+1)
    =Σ[k=1〜m](6m-6k+4)
    =3m^2+m
    右辺は
    [{(6m+1)^2+6}/12]
    =[(36m^2+12m+7)/12]
    =3m^2+m
    となり成り立つ。

    n=6m+2のとき、左辺は
    Σ[k=1〜2m][(6m-3k+4)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+5)
    =3m^2+2m
    右辺は
    [{(6m+2)^2+6}/12]
    =[(36m^2+24m+10)/12]
    =3m^2+2m
    となり成り立つ。

    n=6m+3のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+5)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+6)+1
    =3m^2+3m+1
    右辺は
    [{(6m+3)^2+6}/12]
    =[(36m^2+36m+15)/12]
    =3m^2+3m+1
    となり成り立つ。

    n=6m+4のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+6)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+7)+1
    =3m^2+4m+1
    右辺は
    [{(6m+4)^2+6}/12]
    =[(36m^2+48m+22)/12]
    =3m^2+4m+1
    となり成り立つ。

    n=6m+5のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+7)/2]
    =Σ[k=1〜m+1](3m-3k+5)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+8)+2
    =3m^2+5m+2
    右辺は
    [{(6m+5)^2+6}/12]
    =[(36m^2+60m+31)/12]
    =3m^2+5m+2
    となり成り立つ。

    従って
    Σ[k=1〜[n/3]][(n-3k+2)/2]=[(n^2+6)/12]
    は成り立つ。

引用返信/返信 [メール受信/OFF] 削除キー/
■47689 / ResNo.2)  Re[2]: ガウス記号
□投稿者/ 陽 一般人(2回)-(2016/06/05(Sun) 22:49:40)
    ご丁寧に有難うございます!
    助かりました!
解決済み!
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター