数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■45707 / 親記事)  角度
  
□投稿者/ さっちゃん 一般人(1回)-(2014/02/04(Tue) 14:43:08)
    x軸上の正の部分に点Aをとり、y軸上の正の部分に点Bをとり、z軸上の正の部分に点Cをとる。∠ACBは90°より小さくなることを説明する問題なんですが、∠AOBより小さくなるからではだめだそうで、やり方がよくわからないです。お願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■45708 / ResNo.1)  Re[1]: 角度
□投稿者/ らすかる 一般人(22回)-(2014/02/04(Tue) 19:56:48)
    「∠AOBより小さくなるから」だけではダメでしょうね。
    少なくとも「∠AOBより小さくなる」理由を説明しなければいけません。
    学年がわかりませんので方法が適切かどうかはわかりませんが、例えば
    三平方の定理から
    AC^2=AO^2+OC^2>AO^2
    BC^2=BO^2+BC^2>BO^2
    なので、余弦定理を使って
    cos∠ACB=(AC^2+BC^2-AB^2)/(2・AC・BC)
    >(AO^2+BO^2-AB^2)/(2・AC・BC)=0 (ここでも三平方の定理を使用)
    ∴∠ACB<90°
引用返信/返信 [メール受信/OFF] 削除キー/
■45709 / ResNo.2)  Re[2]: 角度
□投稿者/ yo 一般人(1回)-(2014/02/05(Wed) 01:32:08)
http://yo.mcutesbbs.com
    No45708に返信(らすかるさんの記事)
    > 「∠AOBより小さくなるから」だけではダメでしょうね。
    > 少なくとも「∠AOBより小さくなる」理由を説明しなければいけません。
    > 学年がわかりませんので方法が適切かどうかはわかりませんが、例えば
    > 三平方の定理から
    > AC^2=AO^2+OC^2>AO^2
    > BC^2=BO^2+BC^2>BO^2
    > なので、余弦定理を使って
    > cos∠ACB=(AC^2+BC^2-AB^2)/(2・AC・BC)
    > >(AO^2+BO^2-AB^2)/(2・AC・BC)=0 (ここでも三平方の定理を使用)
    > ∴∠ACB<90°

    ありがとうございます
引用返信/返信 [メール受信/OFF] 削除キー/
■47814 / ResNo.3)  Re[3]: 角度
□投稿者/ tokeitop 一般人(1回)-(2016/11/10(Thu) 02:40:59)
    No45709に返信(yoさんの記事)
    > ■No45708に返信(らすかるさんの記事)
    >>「∠AOBより小さくなるから」だけではダメでしょうね。
    >>少なくとも「∠AOBより小さくなる」理由を説明しなければいけません。
    >>学年がわかりませんので方法が適切かどうかはわかりませんが、例えば
    >>三平方の定理から
    >>AC^2=AO^2+OC^2>AO^2
    >>BC^2=BO^2+BC^2>BO^2
    >>なので、余弦定理を使って
    >>cos∠ACB=(AC^2+BC^2-AB^2)/(2・AC・BC)
    >>>(AO^2+BO^2-AB^2)/(2・AC・BC)=0 (ここでも三平方の定理を使用)
    >>∴∠ACB<90°
    >
    > ありがとうございます当店は信用最高の時計ショップですので、ご安心ください。
    パネライコピーhttp://www.tokeitop.com/panerai.html ,タグホイヤーコピーhttp://www.tokeitop.com/tagheuer.html などの品質最高の時計品です。
    スピード最高の営業方針はいつもお客様の大好評を獲得いたします。
    ご購入する度、ご安心とご満足の届けることを旨にしております。


引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター