数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

No50025 の記事


■50025 / )  屑スレを下げるための問題
□投稿者/ 悶える亜素粉 一般人(38回)-(2019/09/05(Thu) 18:54:57)
     フェルマー最終定理がまだ証明されていないとする。
     x、y、z をゼロでない整数とするとき、もし
      x^3 + y^3 = z^3
    が成立するならば、x、y、z の少なくとも 1 つは 3 の倍数であることを証明する。

     x、y、z すべてが 3 の倍数でないと仮定する。3 の倍数でない整数は適当な整数 k で 3k + 1、3k + 2 と表すことができるから

      (3k+1)^3 = 9(3k^3+k^2+k) + 1
      (3k+2)^3 = 9(3k^3+6k^2+4k) + 8

     したがって(x^3+y^3)/9 の余りは
      1 + 1 = 2 より 2
      1 + 8 = 9 より 0
      8 + 8 = 16 より 7
    のどれかであるのに対し、z^3/9 の余りは 1 か 8 なので、x、y、z すべてが 3 の倍数でないという仮定に矛盾する。
     よって x、y、z の少なくとも 1 つは 3 の倍数である。

返信/引用返信 [メール受信/OFF] 削除キー/


Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター