数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■50105 / 親記事)  約数を mod 13 で見る
  
□投稿者/ 狭い庭 一般人(1回)-(2019/10/20(Sun) 10:36:49)
    nは自然数でdはn^4+n^3+2n^2-4n+3の正の約数とします。
    このときd≡k^4 (mod 13)となる整数kが存在することの証明を
    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■50107 / ResNo.1)  Re[1]: 約数を mod 13 で見る
□投稿者/ らすかる 一般人(36回)-(2019/10/21(Mon) 03:32:51)
    n^4+n^3+2n^2-4n+3=(n-3)^4+13(n^3-4n^2+8n-6)なので
    与式の値自体(=最大の約数)が≡k^4(mod13)となることは
    すぐにわかるんですが、その約数となると難しいですね。
    この問題の出典はどちらですか?

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター