数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48361 / 親記事)  極値
  
□投稿者/ 安室 一般人(2回)-(2017/10/06(Fri) 21:52:56)
    x^2 + 2 x y + 3 y^2 - 2 y - 4 = 0 のとき y の最小値, 最大値を求めよ.
引用返信/返信 [メール受信/OFF] 削除キー/
■48516 / ResNo.1)  Re[1]: 極値
□投稿者/ muturajcp 一般人(8回)-(2018/08/17(Fri) 19:49:49)
    x^2+2xy+3y^2-2y-4=0
    3y^2+2(x-1)y+x^2-4=0
    3{y+(x-1)/3}^2-(x-1)^2/3+x^2-4=0
    {y+(x-1)/3}^2=(13-2x-2x^2)/9
    {y+(x-1)/3}^2=3/2-2{(x+1/2)^2}/9
    {y+(x-1)/3}^2=-{2x+1+(3√3)}{2x+1-(3√3)}/18≧0
    {2x+1+(3√3)}{2x+1-(3√3)}≦0
    (-1-3√3)/2≦x≦(-1+3√3)/2
    y={1-x±√(13-2x-2x^2)}/3

    y'
    ={-1±(-1-2x)/√(13-2x-2x^2)}/3
    =[{±(-1-2x)-√(13-2x-2x^2)}/√(13-2x-2x^2)]/3
    =[(6x^2+6x-12)/√(13-2x-2x^2)]/{±(-1-2x)+√(13-2x-2x^2)}/3
    =[2(x+2)(x-1)/√(13-2x-2x^2)]/{±(-1-2x)+√(13-2x-2x^2)}

    y={1-x+√(13-2x-2x^2)}/3の時
    (-1-3√3)/2≦x<-2の時y'>0だからy増加
    x=-2の時最大値y=2
    -2<x≦(-1+3√3)/2の時y'<0だからy減少

    y={1-x-√(13-2x-2x^2)}/3の時
    (-1-3√3)/2≦x<1の時y'<0だからy減少
    x=1の時最小値y=-1
    1<x≦(-1+3√3)/2の時y'>0だからy増加

    最小値y=-1
    最大値y=2
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター