数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■47800 / 親記事)  等式について。
  
□投稿者/ コルム 一般人(1回)-(2016/10/27(Thu) 18:03:52)
    2つの等式(k+4)a-b=k,
    9a+(2k−3)b=-4k+3から、文字a,bの値が1通り
    に決定できないように、kの値を定めよ。
    この問題で、解が無数にあるか、全然ないかというのが、分かりません。
    ちなみに、答えは、k=1/2、−3です・・・。
    教えていただけると幸いです。

引用返信/返信 [メール受信/OFF] 削除キー/
■47801 / ResNo.1)  Re[1]: 等式について。
□投稿者/ コルム 一般人(2回)-(2016/10/27(Thu) 18:05:33)
    了解しました.一先ずは証明を述べる事にしますが,質問者様の理解に合わせてその都度に細部まで確認するという様にしましょう.


    【証明について】
    [T]2直線ax+by+c=0とpx+qy+r=0が平行であるか,あるいは一致している場合

    b=0ならば,第1の直線の式はax+c=0となり,この式は直線を表すので,x=-c/aとなります.つまり,この直線はy軸と平行であるか,あるいは一致するような直線です.すると,この事と仮定によれば,q=0かつp≠0が成立し,第2の直線の式はx=-r/pとなります.この時,

    ap=bq

    が成立します.次に,b≠0とすると,第1の直線はy軸と平行であるか,あるいは一致するという事は成り立たないため,この事と仮定によれば,q≠0となります.この時,

    第1の直線の式;y=-a/b・x-c/b,
    第2の直線の式;y=-p/q・x-r/q

    となり,ここで仮定を使うと,この2つの直線の式の傾きが一致しなければなりません.この時,

    -a/b=-p/q
    ∴aq=bp

    いずれにせよ,aq=bpが成り立つため,比の式の形で表すと,

    a:b=p:q


    [U]a:b=p:qの場合

    b=0の時,第1の直線の式はax+c=0となるが,これは直線を表すため,a≠0でなければなりません.この時,仮定から,ある0でない実数kを適当にとると,

    p=ka,q=kb

    が成立するため,この時にa≠0とb=0を用いれば,p≠0とq=0が得られます.この時,第2の式はx=-r/pとなり,第1の直線と第2の直線はともにy軸と平行であるか,あるいは一致するため,第1の直線は第2の直線と平行であるか,あるいは一致することが分かります.次に,b≠0の場合を考えましょう.この時,仮定から,ある0でない実数sを適当にとれば,

    p=sa,q=sb

    が成立し,この時にb≠0を用いるとq≠0が得られます.この時,

    第1の直線の式;y=-a/b・x-c/a,
    第2の直線の式;y=-p/q・x-r/q

    となり,この時,

    -p/q=-(sa)/(sb)=-a/b

    が成り立つため,第1の直線は第2の直線と平行であるか,あるいは一致するかのいずれかが成立します.


    以上により,直線ax+by+c=0と直線px+qy+r=0が平行であるか,あるいは一致するための条件は,

    a:b=p:q

    が成り立つ事である事が証明されました.

引用返信/返信 [メール受信/OFF] 削除キー/
■47802 / ResNo.2)  Re[1]: 等式について。
□投稿者/ コルム 一般人(3回)-(2016/10/27(Thu) 18:06:35)
    >つまり、この直線はy軸に平行であるか、あるいは一致するような直線です。
    すると、この事と仮定によれば、q=0かつp≠0が成立し、第2の直線の式は、
    x=−r/pとなります。この時、ap=bqが成立します。


    において最後にap=bqと書かれていますが,これは誤植です.正しくはaq=bpです.失礼致しました.さて,解説の内容を箇条書きで書いておこうと思います.論理の繋がりを目で追っていってください.

    [解説]
    b=0の場合を考える.
    @;b=0ならば,第1の直線の式はax+c=0となる.a=0ならば,c=0となってax+c=0は直線の方程式ではなくなる.よって,a≠0が必要である.
    A;@の時,第1の直線の方程式をx=-c/aの形に変形できる.よって,この式が表す図形はy軸に平行な直線か,或いはy軸である.
    B;Aの結果と仮定より,直線px+qy+r=0もy軸に平行な直線か,或いはy軸を表す.よって,p≠0かつq=0が必要である.
    C;以上により,b=0の場合ではa≠0かつp≠0かつq=0である.よって,aq=a・0=0,bp=0・p=0であるから,aq=bpである.

引用返信/返信 [メール受信/OFF] 削除キー/
■47803 / ResNo.3)  Re[1]: 等式について。
□投稿者/ コルム 一般人(4回)-(2016/10/27(Thu) 18:07:36)
    x 軸が平行か一致する場合は考えなくてもよいのでしょうか?教えていただけないでしょうか。意味不明なところがありましたら教えていただけないでしょうか。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター