数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■47777 / 親記事)  整数解
  
□投稿者/ プミラ 一般人(1回)-(2016/10/14(Fri) 06:53:51)
    a+b^2+c^3=a^2+b^3+c=a^3+b+c^2
    の整数解(a,b,c)を全て教えて下さい(求め方も)。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■47779 / ResNo.1)  Re[1]: 整数解
□投稿者/ らすかる 一般人(2回)-(2016/10/14(Fri) 23:22:54)
    2016/10/15(Sat) 08:21:24 編集(投稿者)

    長くなってしまいましたので、もっと良い解き方があるかも知れません。

    [一つだけ負の場合]
    対称性によりa<0,b≧0,c≧0と仮定しても一般性は失われません。
    このときa≧a^3,b^2≧b,c^3≧c^2なのでa+b^2+c^3≧a^3+b+c^2
    等号が成り立つのはa=-1かつb=0,1かつc=0,1のときで、
    いずれの場合もa+b^2+c^3<a^2+b^3+cとなり不適。
    よってこの場合は解なし。

    [ちょうど二つが負の場合]
    対称性によりa<0,b<0,c≧0と仮定しても一般性は失われません。
    このときa≧a^3,b^2>b,c^3≧c^2なのでa+b^2+c^3>a^3+b+c^2となり不適。
    よってこの場合も解なし。

    [すべて負の場合]
    対称性によりa=min(a,b,c)と仮定しても一般性は失われません。
    以下の6つの場合があります。
    (1) 0>b=c=a
    (2) 0>b=c>a
    (3) 0>b>c=a
    (4) 0>b>c>a
    (5) 0>c>b=a
    (6) 0>c>b>a
    (2),(3),(4)の場合
    a+b^2+c^3=a^2+b^3+cから
    b^2-a^2=(b^3-c^3)+(c-a)
    (左辺)<0, (右辺)>0なので解なし。
    (5),(6)の場合
    a^2+b^3+c=a^3+b+c^2から
    (b^3-a^3)+(c-b)=c^2-a^2
    (左辺)>0, (右辺)<0 なので解なし。
    (1)の場合に成り立つことは自明です。

    [すべて非負の場合]
    対称性によりa=min(a,b,c)と仮定しても一般性は失われませんので
    a≧0,b≧a,c≧aとします。すると
    a+b^2+c^3≧a^2+b+c^3≧a^3+b+c^2
    左の等号はa=bまたはa=0,b=1
    右の等号はa=cまたはa=0,c=1
    これより
    a=b=c
    a=b=0,c=1
    a=0,b=c=1
    対称性により
    (a,b,c)=(t,t,t),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0)
    (tは任意の非負整数)
    が適解

    従ってまとめると、解は
    (a,b,c)=(t,t,t),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0)
    (tは任意の整数)

引用返信/返信 [メール受信/OFF] 削除キー/
■47780 / ResNo.2)  Re[2]: 整数解
□投稿者/ IT 一般人(1回)-(2016/10/15(Sat) 06:07:39)
    2016/10/15(Sat) 06:56:37 編集(投稿者)

    らすかる様 
     「対称性」を使わないと場合分けが多くなり大変ですね。
     この場合の「対称性」は、どうやって確認すればいいのでしょうか? ご教示ください。例えばaとbを入れ換えると 式が変わる気がするのですが。
引用返信/返信 [メール受信/OFF] 削除キー/
■47781 / ResNo.3)  Re[3]: 整数解
□投稿者/ らすかる 一般人(3回)-(2016/10/15(Sat) 07:16:36)
    「対称性」という言葉は正しくないかも知れませんね。
    a→c,c→b,b→aのように3つの文字を循環するように入れ替えれば
    同じ式になる、という意味です。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター