数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48399 / 1階層)  微分
□投稿者/ らすかる 一般人(5回)-(2017/12/23(Sat) 02:54:36)
    どちらも間違っています。

    解1は1行目が誤りです。
    f(-x)=f(x)+x の両辺を微分すると
    f'(-x)・(-x)'=(f(x)+x)'
    ですから
    -f'(-x)=(f(x)+x)'=f'(x)+1
    となり
    f'(-x)=-f'(x)-1なので
    f'(-1)=-f'(1)-1=-2
    となります。

    解2は3行目から4行目への式変形が誤りです。
    lim[h→0]{(f(1-h)-f(1))/h-1}
    =lim[h→0]{(f(1+h)-f(1))/(-h)-1}
    =lim[h→0]{-(f(1+h)-f(1))/h-1}
    =-f'(1)-1
    =-2
    となります。

記事引用 [メール受信/OFF] 削除キー/

前の記事(元になった記事) 次の記事(この記事の返信)
←微分 /質問者 →Re[2]: 微分 /質問者
 
上記関連ツリー

Nomal 微分 / 質問者 (17/12/23(Sat) 00:48) #48398
Nomal 微分 / らすかる (17/12/23(Sat) 02:54) #48399 ←Now
  └Nomal Re[2]: 微分 / 質問者 (17/12/23(Sat) 10:18) #48400

All 上記ツリーを一括表示 / 上記ツリーをトピック表示
 
上記の記事へ返信

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター