数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48398 / 親階層)  微分
□投稿者/ 質問者 一般人(1回)-(2017/12/23(Sat) 00:48:26)
    問:f(x)は微分可、f(-x)=f(x)+x、f'(1)=1、f(1)=0を満たしている。次の値を求めよ。
    (1)f'(-1)

    解1
    f'(-x)=(f(x)+x)'
    =f'(x)+1
    f'(-1)=f'(1)+1
    =2

    解2
    f'(-1)=lim[h→0](f(-1+h)-f(-1))/h
    =lim[h→0](f(1-h)+(1-h)-f(1)-1)/h
    =lim[h→0][(f(1-h)-f(1))/h-1}
    =f'(1)-1
    =0

    解1と2ではどちらが正しいのでしょうか?
記事引用 [メール受信/OFF] 削除キー/

前の記事(元になった記事) 次の記事(この記事の返信)
親記事 →Re[1]: 微分 /らすかる
 
上記関連ツリー

Nomal 微分 / 質問者 (17/12/23(Sat) 00:48) #48398 ←Now
Nomal Re[1]: 微分 / らすかる (17/12/23(Sat) 02:54) #48399
  └Nomal Re[2]: 微分 / 質問者 (17/12/23(Sat) 10:18) #48400

All 上記ツリーを一括表示 / 上記ツリーをトピック表示
 
上記の記事へ返信

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター