数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■48363 / 1階層)  複素数
□投稿者/ らすかる 一般人(9回)-(2017/10/22(Sun) 01:54:38)
    z=r(cosθ+isinθ), c=a+biとおいて
    z+1/z=cに代入して整理すると
    (r+1/r)cosθ+(r-1/r)isinθ=a+bi
    ∴(r+1/r)cosθ=aかつ(r-1/r)sinθ=b
    (sinθ)^2+(cosθ)^2=1を使ってsinθ,cosθを消去すると
    {a/(r+1/r)}^2+{b/(r-1/r)}^2=1
    整理して
    r^8-(a^2+b^2)r^6+(2a^2-2b^2-2)r^4-(a^2+b^2)r^2+1=0 … (1)
    問題の条件を満たすためには、
    (1)の実数解が(あれば)r=±1のみでなければならない。
    (1)の左辺は
    (r^2-1)^2・(r^4-(a^2+b^2-2)r^2+1)-4b^2r^4
    と変形でき、b≠0ならばr=0のとき正、r=1のとき負となるので
    0<r<1である実数解を持つ。
    従って実数解がr=±1のみであるためにはb=0でなければならない。
    (1)でb=0として整理すると
    (r^2-1)^2・(r^4-(a^2-2)r^2+1)=0
    (r^2-1)^2=0の解はr=±1なので
    r^4-(a^2-2)r^2+1=0が実数解を持たないか、
    あるいは実数解を持つ場合はr=±1となればよい。
    実数解を持たない条件は
    x^2-(a^2-2)x+1=0が実数解を持たない
    → 判別式D=(a^2-2)^2-4<0 → -2<a<2かつa≠0
    または
    x^2-(a^2-2)x+1=0が負の実数解のみを持つ
    → 軸(a^2-2)/2<0かつ判別式≧0(かつy切片>0) → a=0
    実数解を持つ場合は
    r=±1を代入するとa=±2となり、
    逆にa=±2ならばr=±1なので a=±2
    これらをまとめると -2≦a≦2 となり、
    b=0なので、条件を満たす複素数cは
    -2≦c≦2を満たす実数。

    # もっと簡潔な導き方がありそうな気がします。
記事引用 [メール受信/OFF] 削除キー/

前の記事(元になった記事) 次の記事(この記事の返信)
←複素数 /りょう →Re[2]: 複素数 /りょう
 
上記関連ツリー

Nomal 複素数 / りょう (17/10/21(Sat) 11:43) #48362
Nomal 複素数 / らすかる (17/10/22(Sun) 01:54) #48363 ←Now
│└Nomal Re[2]: 複素数 / りょう (17/10/23(Mon) 11:27) #48367 解決済み!
Nomal Re[1]: 複素数 / Jouk (17/11/12(Sun) 22:32) #48372

All 上記ツリーを一括表示 / 上記ツリーをトピック表示
 
上記の記事へ返信

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター