数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

ツリー一括表示

Nomal 有理数と整数 /依存症 (17/12/18(Mon) 23:15) #48389
Nomal Re[1]: 有理数と整数 /らすかる (17/12/19(Tue) 00:03) #48391
  └Nomal Re[2]: 有理数と整数 /依存症 (17/12/19(Tue) 07:26) #48392


親記事 / ▼[ 48391 ]
■48389 / 親階層)  有理数と整数
□投稿者/ 依存症 一般人(1回)-(2017/12/18(Mon) 23:15:20)
    a,b,c は相異なる有理数で a+b+c=0 をみたしている。
    (a/b)^2 + (b/c)^2 + (c/a)^2 が整数であるとき、
    a/b + b/c + c/a が整数であることを示せ。

    教えて下さい。よろしくお願いします。
[ □ Tree ] 返信/引用返信 [メール受信/OFF] 削除キー/

▲[ 48389 ] / ▼[ 48392 ]
■48391 / 1階層)  Re[1]: 有理数と整数
□投稿者/ らすかる 一般人(3回)-(2017/12/19(Tue) 00:03:25)
    (a/b+b/c+c/a)^2
    =(a/b)^2+(b/c)^2+(c/a)^2+2(c/b+a/c+b/a)
    =(a/b)^2+(b/c)^2+(c/a)^2+2(-(a+b)/b-(b+c)/c-(c+a)/a)
    =(a/b)^2+(b/c)^2+(c/a)^2-2((a+b)/b+(b+c)/c+(c+a)/a)
    =(a/b)^2+(b/c)^2+(c/a)^2-2(a/b+b/c+c/a+3)
    なので
    (a/b)^2+(b/c)^2+(c/a)^2
    =(a/b+b/c+c/a)^2+2(a/b+b/c+c/a+3)
    ={(a/b+b/c+c/a)+1}^2+5
    もしa/b+b/c+c/aが整数でないとすると、
    条件からa/b+b/c+c/aは有理数なので
    (a/b+b/c+c/a)+1も整数でない有理数、
    {(a/b+b/c+c/a)+1}^2+5も整数でない有理数。
    従って問題の対偶の
    「a/b+b/c+c/aが整数でない」⇒「(a/b)^2+(b/c)^2+(c/a)^2が整数でない」
    が成り立つ。

[ 親 48389 / □ Tree ] 返信/引用返信 [メール受信/OFF] 削除キー/

▲[ 48391 ] / 返信無し
■48392 / 2階層)  Re[2]: 有理数と整数
□投稿者/ 依存症 一般人(2回)-(2017/12/19(Tue) 07:26:52)
    大変よく分かりました。
    有難うございます。
[ 親 48389 / □ Tree ] 返信/引用返信 [メール受信/OFF] 削除キー/


Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター