数学ナビゲーター掲示板
(現在 過去ログ5 を表示中)

HOME HELP 新規作成 新着記事 トピック表示 発言ランク ファイル一覧 検索 過去ログ

[ 最新記事及び返信フォームをトピックトップへ ]

■48731 / inTopicNo.1)  判別式
  
□投稿者/ 男子400mリレー 一般人(1回)-(2018/08/29(Wed) 22:00:59)
    x^2+y^2≠0をみたす任意の実数x,yに対して、常に
    x^2+y^2≠(ax+by)^2+(cx+dy)^2
    が成り立つための実数a,b,c,dに関する必要十分条件を
    α:=ad-bc, β:=a^2+b^2+c^2+d^2
    を用いて表せ。

    この問題なのですが、たぶん二次方程式の判別式を使うだけだとは思うのですが、
    二次の係数が0かそうでないかで場合分けしているうちによく分からなくなってしまいました。
    詳しく教えていただけると助かります。よろしくお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■48733 / inTopicNo.2)  Re[1]: 判別式
□投稿者/ らすかる 一般人(4回)-(2018/08/29(Wed) 22:57:16)
    (a^2+c^2-1)x^2+2(ab+cd)xy+(b^2+d^2-1)y^2≠0
    y=0のときにx≠0である解を持たないためにはa^2+c^2-1≠0が必要。
    よって常にxの二次式と考えてよい。
    D/4={(ab+cd)y}^2-(a^2+c^2-1)(b^2+d^2-1)y^2
    ={(ab+cd)^2-(a^2+c^2-1)(b^2+d^2-1)}y^2
    =(β-α^2-1)y^2
    y≠0,β-α^2-1<0のとき解を持たないが、
    β-α^2-1<0すなわち
    (ab+cd)^2-(a^2+c^2-1)(b^2+d^2-1)<0
    ならば
    (ab+cd)^2<(a^2+c^2-1)(b^2+d^2-1)
    なのでa^2+c^2-1≠0も成り立ち、
    y=0のときも条件を満たす。
    よって求める必要十分条件はβ-α^2-1<0。

引用返信/返信 [メール受信/OFF] 削除キー/
■48746 / inTopicNo.3)  Re[2]: 判別式
□投稿者/ 男子400mリレー 一般人(2回)-(2018/08/30(Thu) 11:50:09)
    思っていたより複雑でした
    ありがとうございました
引用返信/返信 [メール受信/OFF] 削除キー/



トピック内ページ移動 / << 0 >>

このトピックに書きこむ

過去ログには書き込み不可

Mode/  Pass/

HOME HELP 新規作成 新着記事 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター